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Branko Griinbaum:
NEW VIEYWS ON SOME OLD QUESTIONS OF COMBINATORIAL GEOQMETRY *)

1. ' Introduction. The main motivation for this talk is ny

feeling that geometric aspects of combinatorial probleuns (and combira-
torial aspects of geometric problems) are recelving less attention
than they deserve = be the merit determined by intrinsic interest or
by influence on and'inspiration for other parts of combinatorics. The
thinking of some of the most prominent founders of combinatorics (like
L. Fuler, J. Steiner, and T. P. Kirkman) was to a large extent geometric,
and my thesis is that much that is valuable can be found by following
their lead. |

Although geometlry and combinatorics interact at many levels and in
a multitude of ways, I shall examine here only two such areas. This is
not caused by any oblective assessment of thelr value, but by the
accldent of my having recently been interested in them, or having heard
of relevant new results. As will be apparent, many new problems
- geometric as well as purely combinatorial - are suggesting themselves

very naturally.

The two areas we shall discuss are convex polytopes, and arrangements.

They are both concerncd with phenoﬁena in the (real) Euclidean plane or
n-space, but their ramifications are very farflung. Ir each area, the
coherent body of avallable eeometric facts offers the possibility of
obtaining interrelated points of view on a whole family of prodlens,

and naturally lcads to unexplored avenues in many directions. It may
also sumgest methods of proof, or instructive examples. I hope that the
cases discussedl in the followlng pages will provide ample illustrations,
ani possibly induce other workers to try thelr hands at solvine the

remaining open questions.

*) Researcn supported in part by the Office of Naval Research
under Grant NOOO14-67-A~01.03-0003,
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2. Convex polytopes, &he combinatorial aspects of the theory of
polytopes éppears to have been totally allen to the mathematiclans of
antiqui£y and the middletages. Euler seems to have been the fifst to show
genuine interest for it and to obtain non-trivial results (Euler cﬁgracte-
ristic, etc.). A large part of the interactions of the theory of |
3-polytopes (3-dimensional convex polytopes) and combinatorics (especlally
.5raph theory) 1s based on the folléwing theorem of Steinitz [1922]

(see Grﬂnbaum [1970; Section 1.2] for detalls and references to the
1iterature):

A graph G !;S....-&?.é.’ﬂ?lfph.iﬁw_PQ__PDE_E,,I‘aPh defined by the vertices and
edges of sgmé: 3-polytope 1f and only 1f G 1s planar and 3-connected.

To dlscuss the first group of graph-thecretic results and problens
related to convex polytopes we recall the following theorem of V.

Eberhard {1891]: |

Given non-negative integers Djy Dy» Dy» Pys Pg seees P With the

property -
(%) > (6-k)p, =12 , F
3<k#£6 ;

there exists a 3-valent 3-polytope P reallzing p3,....pn » that is,

such that py(P) = p  for a1l k # 6 , where p (P) 1s the number

of k-gonal faces of P .

Following a simpler proof of Eberhard's theorem given in Griinbaum
[1967; Section 13.3], a large number of analogues and extensions of
Eberhard's theorem to planar graphs (and to graphs lmbedded in other
2-manifolds) was obtained (for details and references see Gritnbaum
[1970; Section 1.3]}). It should be noted that (using Steinitz's theoremn,
and duality for planar gzraphs) Eberhard's theorem may be interpreted
as ylelding information on the valence sequences ("degree sequences")

of triangulations of the plane., It 15 well known that only the most
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rudimentary results have been found so far about valence sequencesﬁbf
arbitrary planar graphs, although that problem has been proposed (in
the dual formulation) already by Sainte-Marie [1895].

There has “een appreciable interest in the setvof values of pé(P)
possible (in Eberhard'é theorem or 1ts graph-theoretic analogues) for a
given séquenceﬁ;pB.....pn « The first non-trivial result, establishing
a speclal case of a conjectureIOf Eberhard [1891], was found in
Grinbaum-Hotzkin [1963]:

If Py = 4 and pj =0 for J # 3,6 , then the set of values of

s

i
, §
pé(P) possible in realizations of the sequence consists pfecisely of !

all the even integers different from 2, (For far-reaching geﬁéralizations

of this result see Gallai [1971] and the refereﬁcesigiven there. ) !

The behaviour of the set {p6} in thls case was established as |

i typlcal by the following recent result of Fisher [1973]: %
E If a sequence PyreecsP satisfies (*) , the set of values of Pg %
ESEﬁlEl?uin rea}izaf{gﬁg of the sequence contains elther all sufficiently %

E-~ iarge even integers, or all sufficiently large odd ones., i

If pk(P) 1s interpreted as the nmumber of k-gonal countries of the

(2-connected) 3-valent planar graph P , then pz(P) is also meaningful,

I st b 4o

and Eberhard's theorem and the condition (#) may be extended to sequences
that start with pz.

A conjecture made already by G. Branel [1897] (and independently
also by Malkevitch [1970]) deals with such a case; i1t was recently
establizhed by Grlinbaum=-Zaks [1973] where it was proved together with
a number of analogous results:

If p,=3 and py, =0 for J#2,6 the set of values of pg

possible in realizations of this sequence is precisely the set of

1ntege?§_?¢presentable in the fqrm p6 = u2 + uv + v2 « 1 , where

u, v are non-negative integers and (u,v) # (0,0) .

R 3 iy
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This resulf‘shows that for P, £0 the behaviour of {pég
is drastically different than;in the case covered by Flsherfts

theoren.

Among the open problems related to these results are:s

What are the analogues of Fisherfs theorem 1f¢;pz #Z 0 ; what if
even Dy 1s different from zero ?

Are there analogués of Eberhard's theorem for graphs imbedded 1n
2-manifolds if digons (and monogons) are permitted ? If digons (and
monogons)are allowed, planar graphs may have all vertices of arbitrarlly
high valence. Zaks [1973] has established an Eberhard-type theorem for
6-valent planar graphs (in which case the number p3 cf triangles 1s
not determined), but meny natural extensions are still unexplored.

* » *

The second group of graph-theoretic problems derived from results
on polytopes starts from the relatively recent {(and unfortunately rather
little known) beautiful theorem of Kotzilg [1955] (for a more readily
accessible proof see Grtinbaum {1973a]):

Every 3-polytope P has an edge such that the sum of the valences

of its endpoints is at most 13; the number 13 is best possible.

Kotzig's result, which can obviously be translated to deal with
3-connected planar graphs, has recently been strengthened 1ln several
directions. Jucovié [{1973] has shown that every P has at least 3 edges
of the type discussed, and at least 6 1f P is simplicial (that is, if
all the faces of P are triangles).

In order to descrlibe some other results and open problems, let us

denote by €y k = eJ k(P) the number of those edges of the 3-polytope
4

or planar graph P which have one cnidpoint of wvalence j , the other




o b, "o e P, e e 2 ety ik

e

-5 -
of valence k . (The fact that es'5 + e5'6 > 0 for plénar triansulations
of minimal valence 5 was established by Wernicke [1904] in connection
wlth reductions of the four-color problém; Strengthenings of this result
- which 1s less deep than Kotzig's - have alsc been glven by Jucovie
[19731).)
A new improvement of Kofzig's theorem 1is:

> 4 wvertices (or,

——

If S 15 o felangulationior Cae plono i th

equivalently, a simpliclial 3-polytope) such that ej x = 0 whensver
= IR L b ir s de et aa e - , ol = ke 4 . 8 S =

< thes
J+ k £12 , then e3.10_>_ 60 .

To prove thils result we recall that the proof of Kotzlg's theorem

in Grtiinbaum [1973=:] ectually established that under the assumptions

of the theorem

(**) ' 83,102 24 + 3V10 N

vaere vy, is the number of 10-valent vertices. But this inequallty

has a rather interesting self-lmproving character. Since ej 1092 2h

and a 10-valent vertex is adjacent to at most five 3-valent ones, it
> P #%), T >

follows that v442 5, so that e3'1023_39 by (#%*), Then Vig 2 8 , %

so > U8, thus vy > 10 and then

0 ®3.10

> 54, Therefore é
> r = > .
> 57 , and finally Vi 12 and e3.10 60

> 60 1s somewhat remarkable since it is

3,10

v10> 11, 63310

The inequality e3'10
best possible in the following strong sense: Equallty holds fTor thne
3-polytope obtalned by placing 20 small pyramids on the faces of the
icosahedron, as well as for infinitely many other 3-polytopes.

The last result and the theorem of Jucovic [1973] lead to the
idea that a relation of the type EE'”. ij.kej,k > 1 should

J+k €13
hold for every simplicisl J3-polytope. liore precisely, we conjecture that

~ 3
6e§'6 + 1585,6 + 306;.6 -|-12e45f'5 + 2183’5
60e* _ > 360 . Not all the coefficients in this inequality are equally 1

+ 36e!}'*,5 +36e4,4 + H5e§’4 -

Jed =
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believable, but I reel rea50nab1y sure aboup those indicated by an

asterisk,

P. Erd8s (private communication) has conjectured that Kotzig's

theorem is valid for all planar graphs wlthout loops or mulitiple

edges and of minimal valence 3 .

Other open problems related to Kotzig's theorem include generali-
zations of the above to triangulations of (or to all 3-connected graphs
imbeddable or 2-cell imbeddable in) 2-manifolds of hlgher genera, Kotzig's
number for triangulations of the torus is eééily seen to be 15, but
nothing beyond that seems to be known. Even greater is the challenge

to find meaningful analogues for sultable classes of higher-dimensional

complexes.

#* % *
Several other types of problems in graph-theory motivated by the
theory of polytopes are discussed in Grinbaum [1973a] and [1973b]. Instead f

of repeating them here, we turn to the area of arrangements.

s e AR
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3. Arrangements. A gerneral topic of investigation that has been . g

frequently emerging in many variants for at least 150 years can be

described as foliows: What can we say about the various phenomena that

may be observed in finite sets of points, 11nes. curves of various ) l
. families, flats, or hyperplénes, in the real plane (Euclidean or présectivei
the sphere, or 1n:the higher~dimensional spaces. The first - and rather |
limited - attempt to éYstematically survey the results known on this
topic that we call "arrangements" (of po;hts. lines, etc.) was made in
the recent booklet Griinbaum [1972]. i
Historiéally. some of the problems on arrangements of pcints_and
lines generated interest in (or were associated with) wvarious purely
combinatorial structures -~ such as the Kirkman-Steiner triples,
block designs, finite geometries, etc, Others led to irvestigations that
are usually associated with algebra, or algebrzlc geometry, or uith
topology. It often turned out that in the modified or generalized setting
the problems have a very elegant solution - »ut this does not (or at

least it should not) obviate the need of trylng to find answers to the

original questions. _ For background, references, and
material related to the topics discussed below the reader ls generally
refered to Gritnbaum [1972], and for higher-dimensional material to
Grinbaun [1971].

For a set An of n points in the plane, not all on one line,

we shall denote by mj(An) the number of lines contalning precisely

J of the points. Several variants of the following problems were




repeatedly mentioned andhinvestigated by J. Je. Sylvester between 1867

and 1893; many others were ralsed by other authors (see Grinbaum

[1972; Chapter 2] and Burr-Griinbaum-Sloane [1973] for detailed referencesﬁ

(1) Determine m,(n) , the minimum of mz(An) wien A, varles
over all (non-collinear) n~poinfed sets in the plane, "
(11) Por each J 2 3 determine ij(n) » the moximum of -mj(An)
when An varies over all n-polnted sets in the plane.
Concerning the first problem it is known that
3n/?7 £ myin) £ K(n) ,

where 3, 3, 4, 6 for n= 3, 4, 5, 13
K(n) = n/2 n even, n £ 4
3[1’1/“’] ‘ n cdd, n # 30 5= 13 &

It may be conjectured that mz(n) = X(n) for all n > 3 ; this
relation is known to hold for 3<n<£14 and n =16, 18, 22 , The
bound 3n/7 is due to Kelly-iioser [1958].

Concernirg the case J = 3 of the second problem, some assertions
of Sylvester's have recently been verified and strengthened in Burr-

Grinbeum=-3loane [1973] where it was established that
pm) £ngn) £ (),

v

- {6, 16, 37, 52 for n =7, 11, 16, 19
n
P 1 + [n({n-3)/61] all other n ,

and
n
Yim = ({3) - my(n))/3 .
It may be conjectured that ma(n) = ‘@(n) for all n ; this is known
to be true for 4 <n <12 and for n = 16,
The determination of mj(n) is of interest, amons others, becauve

of its connections on the one hand to the Kirkman [1847] problemn

of maximizing the number of triplets on n elements, with no pair
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occuring twlce, and on the other hand to the eiementary algebraic

geometry of cublic curves and to the Welerstrass elliptic functions.

é The degree of our knowledge changes drastically when we turn to
é_ consider mJ(n)> for | Z,h. The best result known is due to H. Croft
? and P. Erd#s (unpublished):
é .EQEWEEED.hJJZ 3 lthere exists a constant °y> 0 such_that
% | mj(n) > anz for all n> 3 . }
f The proof of Croft and Erd8s is based on the observation that for
k sufficiently large, c}*n2 lines_ intersect precisely 'J of the n = 2
! ‘ ~ lattice points (x,y) with 0= x;y4 K

A related proof of the projectively dual statement (that n 1lines
may be chosen so ac to determine at least an2 vertices of multiplicity
J - that is, through each of which _.2ss exactly j of the lines) was

indicated in Griinbaum [1972; p. 20]. Ye repeat it here briefly for J = U4,

in order to show how to obtain an estimate of the form

(#a%) C my(n) > n?/6b,

g oo e e 7

For n> 6 , we consider the horlzontal and the vertical lines,
and those of slopes +1 or -1 , that pass through the points (x,y) of
the integer lattice, with 0<x < [n/6] , 0<y < [(n+3)/f] . Then

there are at most 3(In/6] + [(n+3)/6]1) £ n 1lines involved, and they
determine [n/6][(n+3)/6] quadruple points (x,y) ; the estimate (###)
follows easily. It may readily be improved to my(n) 2_n2/uo.
Although it is probably not hard to show that
- 2
¢y = lim mJ(n)/n

n->
exists for each J > 3 , no reasonable conjecture for the values

ol

has heen made. Even for J = 4, the sstimates available are only

The upper bound follows from the following combinatorial results

Let mz(n) denote the maximal number of quadruplets formed by n
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elements, such that no palr oceurs in wore than one quadruplet. Th;s
'fcombinatorial probleﬁ appears to be only partially solved (see Hanénii
(19611, SchBnheim [1906], Hall [1967, p. 248], Niven [1970], Wilson .
{1970]) by the assertion that mﬁ(n) < ([(n=1)/3In/4] - E(n)v.‘where
€(n) =11if n=7 or n =10 (mod 12) and &(n) = 0 otherwise; equality
holds for n =0 or 3:(mod 12) and in some other cases, as well as for
all sufficlently large n . |

For small n , a certaln amount of additional informa*ion on
m,(n) 1is available; 1t has been collected in Table 1. (The author is
greatly indébted’to Mr. R. H. Hacmillan for information on his unpublished
results, and for permission to include here his figures, especially
Figures 2 and 3.)

A particularly interesting variant of the problem on mj(n) is
the following:

For each j>3, determine ej(n) . the maximum of mJ(An) when
A, varies over all those n-pointed sets in the plane that contain no
collinear (j+l)-tuple.

This problem was first raised by Erd#s [1962], and Kérteszi [1963a]
proved
(#) ej(n)z djnlogn for some dJ >0
by showing that eJ(Jn)EZ.JeJ(n)+ n. He established this inequality
by taking J copies of an An with mJ(An) = ej(n) , and translating
them by multiples of a sultable vector not paralizl to any of the
lines determined by An o 'The estimate (#) follows easlly. Karteszi
[1963b] conjectured thet en(n)ii dumB/2 ; we shall establish:

For eadh 2 3 Ehere oxigty d, >0 Euch thay

e.'}(n) > ayn (§=1)/(3-2)

The proof (of the projectively duel assertlon) 1s by iInduction on

J o PFPor J =31t is enough to note thﬁt the systems of n 1lines

and /g(n) triple points constructed in Burr-Grinbaun-Sloane [1973]
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f%; ~ 10a =
iy ; ‘ =
; 'n .Mifi?al ¥nown mu(An) Laximii known*?u(An)
a3
,-?.; 5 1 a
b 6 1 a
7 2 a
8 2 a
9 3 a
10 5 a
11 6 a
12 s 8
13 9 -
14 10
15 12 o -
16 15 3ee Pigure ia
17
18 18 Jee Figure 1b
19
20 20 b
21 23 ¢ 24
22 28 See Figure 2
23
24 29 c 33
25 30 b
26 32 c
27
28 36 d
29
30 Lo b
31
32
33
30 L6 c 55
35 50 c
36 55 See Figure 3 61
; Table 1. Known lower bounds for mu(n).
? (a) The number equals my(n).
} (b) See Figure 2.13 in Grinbaum [1972].
% E (c) Obtained by deletins or adding points to the arrangements
¢ in Figures 1, 2, or 3.
; g (d4) Described by Ball [19607.
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actually show that eg(n) = /j,(n) > d:"n2 . If we have an arrangement

oo (3=1)/(3=2)
A(k,3J) of k. 1lines that.detg;mine d = dJk

- j=tuple

points (vertices) P1""'?d ¢ but;no point is on more than j 1lines, we
show eJ+1(n)§i d3+1n3/(3'1) as follows: In Euclidean 3-space we take
one copy of A(k,J) in the plane z = 1, and another copy of A(k,j) in
the plane z =q , for a suitable integer q , the second copy rotated
by an angle ® with respect to the first, Lgp le""’Ld be the
straight lines connecting homologous vertices in the two copies. For
each b = 2,3,e0e,q=1 , the d intersection-points of the plane z =D
vwith the lines Li form a set which is linearly equivalent to5fhe gset
'Pl....,Pd » and therefore lies on k suitable lines. Thus we have a
family of n = qk ¥5ddk(3-1)(3-2) lines that Qetermine <1dj k(j-l)/(J-Z)
vertices of multiplicity J-1 and, for a suitable choice of ¢ , mo
vertex of greater multiplicity. A suitable (parallel) projection of those
lines yields a planar arrangement of lines with the sanme property. But
if q 1is ch;sen to be about 1/ (3-2) » 1t follows that n 1is about
(d3+1)k(3”1)/(3'2) ; therefore

eJ+l 1P 4

and the proof is completed. '

It should be noted that all the examples establishing the values of
mu(n) in Table 1 actually contain no collinear guintuplets, so that
the values glven are at the same time lower bounds for eq(n).

A very interesting open problem is the determination of the true
order of magnitude of eJ(n) « It is well possible that our result

may be lmproved to ej(n) > d* n? .

Other related open problims ares

The determination of ﬁa(n) , defined as the maximal nunber of
vertices of multiplicity J possible in arrangements of n pseudelines.
A few instances in which better results are avallsble for ﬁhfn) than é

for mu(n) are noted in Table 1,




The problem of the combinatorial analogues of mJ(n) goes back

i
o

| to Kirkman [1847] huf}}as noted above, is still not completely solved
3 even for I=4b. |
S Also dpen 13 the question of determining Fheﬁmaximal posélble
Funumber of vertices of multiplicity 3 1n‘var1§us kinds of arrangements
} ;f cuives, for examnle such in which each;purve is simple and every
ﬁ_two intersect in two points., The corresponding combinatorial packing -
gjproblems are open as well., |
. .ﬂ » » »
The following problem was posed by de Rocquigny [1897]:
What is the maximal number a)o(n) of points of tangency possible
?1n a system of n mutually non-crossing circles in the plane ?
i Using a blend of geometric and combinatorial arguments, Erd8s-
éGrﬁnbaum [1973] established that 43°(n) = 3n-6 for each n 2 4 , and
that the same estimate holds for more general arrangements of non-crossing
3 simple closed curves. In the same paper, partial results were obtained
on the follpwing relaﬁed problens:
9 Determine & (n) [ and W#*(n) ] , the maximal numbér of points
of tangency in a family of n simple closed curves [circles] each two
of which are elther disjoint, onfhave one common point, or two points
at which they cross each other. The results of Erd#s-Griinbaum [1973] are:

There exist positive constants c¢ , ¢4 , C, and n, such that

for all n2 n,

h/3

en UL @ (n) < con

5/3

and

1 + ¢/loglogn
wH(n) > n g

The ahélogue of de Rocquigny's problem for spheres in 3-space

is still unsolved, and so are similar problems concerning ovals in
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various incidence structures.

bl

* o *

Aﬁbther special class of arrangements of simple closed curves
are the "independent families" and the "Venn diagrams". Motivated by
the obvious'and well known considerations'from set thaory and logic, we
shall say that a family of n simple closed curves -Al""’An in the
Euélidean plane is an 1ndependen§ family provided |
##) X, 0 %, N ees X, £ 8

whenever each XJ is chosen tb be either the interior or the exterior

of tﬁé curve Aj « An independent family is a Venn diagram if and only

if each of the 2P sets in (##) is a'connected reglon (cell of the

Venn diégfam). Examples of Venn diagrams with n = 3 or n = 4 (such as
those in Figures 4a and 4b) are frequently found in the 1literature.
Combinatorially distinct Venn diagrams of 4 congruent ellipses are
possible (Figures 4c¢ and 4d), but no complete classification is known.
Venn [1880] ané many later authors (see, e.g., Gardner [1967])
asserted that there is no Venn diagram composed of ellipses for n =5 .
This is erroneous, as ls easily seen on hand of Flgure 5. It is not
hard to see that similar diagrams may be constructed using 5 copies of
any non-clrcular ellipse, However, no Venn diagram can be {ormed by
6 ellipses. This follows at once from the case J = 4 of the following
lemma, which 1s easy to establich but rather useful (see Griinbaum [1973c])

If an Independent family of n curves is such that each two curves

meet in at most n points, then

12" - 2)/(0) = 42" - D/

Let k-gon mean any convex polygon with at most k sides. We shall
denote by n(k) the maximal number of members in any independent
family of k-gons in the plane, and by k(n) the minimal k such that

there exists an independent famlly on n  k-gons. The similarly defined
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numbers dealing with Venn diaérams shall be denoted n*(k) and k#*(n) .
Then the above lemma with J = 2k , and an inductive construction
illustrated (up to n=6) in Figure 6, may be used to establish

1im n(k)/logzk-_- 1inm n*(k)/log, k =1 .
k o k->® .

(The same result holds even if each bounded cell of the Venn
diegram is reduired to be convex.)

The above result appears in Rényi-Rényi-Surényi [1951]; however,
their proof is based on a statement cbtained from our lemma by replacfﬁg
the inequalit& of its conclusion by the stronger inequality

12> 2" ey
Unfortunately, this statement is not true, as may be seen by the example
in Figure 7, where n= } = 6 . It would be of some interest fto investigate
whether the stronger inequality can be established for convex polygons
of 3}/2 sides , although this does not seem likely.
Among other results obtained in Griinbaum [1973c] we mention:

k(3) = k¥(3) = k(#) = k*(4) = k(5) = k*(5) =3 3

X(6) £ k*(6) £ b4 ;

k(7) £ 6 .
Equality probably holds in all those estimates; an example of a Venn

diagram with 5 triangles 1s given in Figure 8.

Many other attractive problems on Venn disgrams, on dlagrams
exhibiting rotational symmetry (as in Figure 8), and on higher-dimensional
generalizations are glven in Griinbaum [1973¢c], where detailed references

to the literature may also be found.

% » »
OQur last toplc concerns a very new problem on arrangements of
simple curves in the plane, which shows that there are non-trivial

problems even If only arrangements consisting of & single curve are

considered, It was inspired by A recent problem of Malkevitch [1971].
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Let C be a simple closed curve in the plane., We shall csay that
a point p \is of‘ _o_:‘__c_l_g_r_ kX with respect to- C 1if each ray "i_issuing
from p\ meets C.L in precisely k connected components. For k > 2
we shall denote by gk(c) the sct of all points of order k with
vespect to C . The problem is to characterize, for each k , the
possible sets (gk(c) . _
It is not too hard to verify the possibilities for gk(c)
listed in Table 2, We conJec;ture that Table 2 gives--,ﬁ coriiblete
 characterization of all the possible sets @?k(c) . This conjecture
hae been i‘ecgntly established by B. Hedman [1973] in cases k = 2 and
k = .3 'provided the curves C are reétricted to Be simpi'e polygons.
(I .am indebted to B. Hedman Tor _sevérall"coi"rections of my original
_conqecture.) . ‘ Y | e
| It_' would be very interesting to vefify- the conjecture for gene.x"'él
curves C , and for k >4 . Hedmen's proof relies heaﬂly-én the -
polygonal nature of the curves, and does not seem 11ke1y to be

extendable to general C , or to k > 4 ,
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Typ; of set %?;(C) | Q‘Possible for .

[/} e | all k2> 2

single point ._ all ka 2

two poinﬁs : o | all k » 2

threelppints all k 23

four points (a) B k=3

one segment (b) | a1l x 22

two segments (b) (C) : k=2

a8 ent anl a noint (b),(a) all k2 2
'"ia segment and tno noints (b)), (e) all ¥ > 3

(a) For k = 3 possible only if the four polnts are the vertices
of a co*ﬁvex qua'irangle which has no pairs of parallel sidé's._ For
lt« posuible also if‘ ‘the side of‘ one- pair are parailel, or if

three-.of_the points are collinear,

(b) The segment(s) may be closed, oj)en, or half-open, -
(c) Possible only if the °eplnent5-are disjoint, non-'barallel,
and the convnx hull of‘ their union is a ziuadmm,le.

(d) Possible only if‘ the point io rot colllnear with the mgment.

- (e) Posslble only if the two points are in the same open halfplane

£ determined by the segment,

ekl i
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Figure 9.
A volygonal curve C for which (673(0) consists of 4 points,
.
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